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Summary 
In the Deliverable D2.5 on “Uncertainty and Robustness” current state of the art approaches 
in model validation and uncertainty estimation are reviewed and their limitations are briefly 
described. The focus of the report is on model use for regulatory purposes and therefore, the 
different uncertainty approaches in Air Quality Assessment, Health Impact Assessment and 
Integrated Assessment Modelling are considered, in view of the EU legislation requirements. 
Information for this review was derived from published scientific papers and from the 
answers received in response to the questionnaire distributed within the framework of 
APPRAISAL activities. Model quality assessment and evaluation methods are examined 
separately for model use in relation to Air Quality Planning and for model use in relation to 
other purposes, e.g. Air Quality Assessment or research projects. 
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1 INTRODUCTION 
Air quality model evaluation and estimation of model uncertainty have received increasing 
interest from local authorities and decision makers (Borrego et al., 2003) since the first model 
applications for air quality management purposes. As the role of modelling in understanding 
the influence of physical and chemical processes on the dispersion and transformation of 
pollutants is increasingly being recognised, the current European Directive 2008/50/EC on 
ambient air quality and cleaner air for Europe (AQD) encourages the use of air quality 
modelling, in combination with monitoring, as scientifically relevant tools for a range of policy 
applications. Models may be used to assess and predict exceedances and high-pollution 
areas, to identify the main polluting sources, to develop air quality plans and mitigation 
strategies and to perform risk assessment in the case of accidental atmospheric releases. As 
policy makers consult models for strategic decisions with health and economical 
consequences, it is important that their results are quantifiably accurate, precise and realistic.  
Model results are subject to limitations and uncertainties and, therefore, model performance 
evaluation is necessary in order to use model results with confidence for policy purposes. 
Thus, the need to incorporate uncertainty estimation in air quality modelling is also 
recognised by policy makers and is required by the AQD. Quantification of modelling 
precision is reflected in the modelling quality objectives described in Annex I of the AQD, 
which are given as a relative uncertainty (%). However, no particular methodology for 
estimating uncertainty is prescribed in the AQD and the wording of the text related to 
uncertainty is ambiguous.  
 
It is worth noting that there has been a long standing ambiguity as to the exact meaning of 
the term “uncertainty”. In the literature, the term has been associated both with the evaluation 
process as well as to represent the stochastic character of natural variables inside air quality 
models. The two are of course closely linked, but the methods used for the quantification and 
study of each of the two can differ substantially. This deliverable, as well as the questionnaire 
that is formulated and analysed here, attempts to tackle both aspects of uncertainty by 
inquiring both about the evaluation process and the uncertainty quantification and 
propagation methodologies. The latter could, in lack of a better term, be named 
“indefiniteness”. The current legislative framework associates uncertainty principally with the 
model evaluation process while the propagation of uncertainties remains largely a scientific 
endeavour, focused mostly on scenario analyses, issues of model development and better 
understanding of the implementation in models of various physical/chemical processes.  An 
attempt to highlight the differences between the two, is presented in table 1. 
 
Table 1:   The notion of uncertainty 

Term Time Assessment 
type Methodology Quantitative 

Indices 
Legislative 
provision 

“Uncertainty” Past / 
Present 

Past / Current 
state assessment 

Evaluation / 
Validation 

Statistical 
indices (error, 

bias, RDE) 

Yes 
(2008/50/EC) 

“Indefiniteness” Future Scenario 
analyses 

Model 
propagation 

Confidence 
intervals, error 

bars 
No 
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In view of promoting a harmonised and standardised approach for air quality model use for 
regulatory purposes, several scientific attempts have been recently made to develop a 
methodology for the quantification of uncertainty in model results. These attempts mainly 
focus on the identification of uncertainty sources in air quality modelling, on the setting of 
uncertainty indices and on the development of a consistent procedure for the uncertainty 
quantification of air quality model results that is reconcilable with the requirements of EU 
policy. The “Guidance on the use of models for the European Air Quality Directive” is an 
ETC/ACC report, summarising the efforts of the “Forum for air quality modelling in Europe” 
(FAIRMODE, http://fairmode.ew.eea.europa.eu/) to provide detailed instructions on the use 
of models for regulatory purposes, including quantification of uncertainty, according to the 
requirements of the Directive (see Ch.6). 
 
In order to rely on model results for air quality decision making, both model performance 
evaluation as well as uncertainty estimation are of imperative importance. Model evaluation 
suggests validation of model results against measured data (DEFRA, 2010). In the case 
model results are found to compare well with observed values, the model is considered to 
accurately represent physical reality. Model evaluation includes the issues of model spatial 
and temporal resolution, which has to be consistent with or representative of the measured 
data, in order for the model to perform well in a point-by-point comparison between 
predictions and observations. In terms of comparing model results to measurements, the “fit-
for-purpose” of the model has to be taken into account. For example, the model may not 
produce realistic results if applied to physical situations that are different to those used to 
derive the model. This consideration is relevant both to simple air quality models (e.g. 
empirical models), but also to more complex modelling tools. An empirical model based on 
near ground data over a flat agricultural field would not perform well if applied to dispersion 
from a tall stack in a domain of complex terrain (Hanna, 1988). In the case of complex 
Eulerian models, the physical assumptions and Planetary Boundary Layer parameterisation 
schemes used in the model will influence its performance under different meteorological 
conditions. It is therefore necessary to perform model evaluation under different atmospheric 
conditions, using different spatial and temporal resolution and for both homogenous and 
complex terrain cases, in order to identify the models limitations. The model can then be 
calibrated on the basis of a sensitivity analysis that will identify the conditions and input data 
for optimal performance. The sensitivity analysis is part of a diagnostic model evaluation and 
is connected to uncertainty analysis, as the effect of different parameters on the “error” or 
“uncertainty” of the model output is examined and quantified. 
 
The deviation between model calculation and measurements is correlated to model 
uncertainty, assuming that measured data are a representation of reality or selected to be 
representative of the model temporal and spatial resolution. In this context, uncertainty is a 
measure of the reliability of the model results. The total uncertainty involved in air quality 
modelling simulations can be calculated as the sum of three components (Hanna, 1988): (a) 
the uncertainty due to errors in the model physics or deliberate simplifications to reduce 
computing time, (b) the uncertainty due to input data errors (meteorology, emissions data, 
boundary & initial conditions), (c) the uncertainty due to the stochastic nature of atmospheric 
processes (e.g. turbulence). The first component of model uncertainty may be reduced by 
introducing more physically realistic and computationally efficient algorithms. Some of the 
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effects of input data errors may also be reduced through the development and use of more 
accurate monitoring instruments. However, the stochastic fluctuations are a natural 
characteristic of the atmosphere that cannot be avoided. Stochastic fluctuations as some 
other uncertainty sources are of unknown magnitude and can not be realistically quantified. 
For example, in the case of model application for the prediction of air quality in relation to 
future emission scenarios, future atmospheric conditions (e.g. relating to climate change) or 
future technological advances (e.g. new technologies in vehicles) represent an important 
source of uncertainty (Colvile et al., 2002). 
 
A number of statistical parameters are commonly used for the assessment of model 
uncertainty and for evaluating model performance against measurements (Chang and 
Hanna, 2004; Yu et al., 2006). Some statistical indices, such as bias, may be calculated in 
both cases. Other statistical parameters are more often associated either with uncertainty 
quantification (e.g. standard deviation and probability distribution functions) or with model 
performance evaluation (e.g. correlation coefficient and index of agreement). The statistical 
results of an evaluation analysis must be considered as the basis of a comprehensive 
methodology to assess model performance which will provide the explanation for model 
deviation. A suggestion for a standardised methodology of model evaluation and uncertainty 
analysis in support of European legislation requirements still remains a challenge for the 
scientific community. The current-state approaches performed by regulatory bodies and 
scientists in several EU countries have to be assessed in order to identify problems and 
needs. A recent survey was undertaken within FAIRMODE SG2 activities. The survey 
consisted of distributing questionnaires to EIONET NFPs representatives (representing 40 
European countries) and 49 experts and regulators (Fragkou et al., 2012). Questions on the 
methodology used for the evaluation and uncertainty estimation of model results were 
addressed in the questionnaire. Although the questionnaire focused on the application of 
models only for the purpose of source apportionment, a few important results were obtained. 
The majority of the reported studies have applied some form of evaluation methodology, 
which most commonly involved comparison of model results with measured data and model 
intercomparison. However, limited information was contained in the returned questionnaires 
on the estimation of uncertainty and several researchers have commented on the need for a 
guidance including common criteria, indicators and performance measures to facilitate the 
procedure. In view of these needs, another survey was conducted within the APPRAISAL 
project in order to obtain more detailed information on the uncertainty estimation and 
evaluation methodologies used in model applications for different regulatory purposes by EU 
member states. The novel element in this questionnaire distributed to interested stakeholders 
and modellers within the frame of the APPRAISAL project was that not only air quality 
models were included but other types of models used for source apportionment or Health 
Impact Assessment studies were represented. Also the application of evaluation and 
uncertainty estimation procedures used in Integrated Assessment Modelling was examined.  
 
Before discussing the results of the APPRAISAL questionnaire (Ch.4), it is useful to present 
state-of-the-art practices of uncertainty estimation and model evaluation related to the use of 
models for policy purposes. 
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2 STATE-OF-THE-ART  

2.1 Uncertainty in regard to Source Apportionment applications 

Understanding the factors that contribute to the uncertainty in Source Apportionment (SA) 
studies is quite complex, since the actual contribution of pollution sources to the level of 
pollutants observed using measurement instruments is unknown. As in every model, the 
uncertainty in source apportionment models’ outputs depends largely on the quality of the 
input data. In addition, the noise in the input data may be amplified by the one introduced by 
the model to the output. 
In receptor models the uncertainty derives from both inaccuracy in the input data and model 
assumptions and ambiguities. Interpreting the results of a source apportionment study and 
comparing results from studies in different sites or in the same site with different models 
requires proper uncertainty estimation (Karagulian & Belis, 2012). Considering that receptor 
models rely on the mass conservation principle between source and receptor, substantial 
departures from this assumption due to evaporation, condensation or degradation of species, 
constitute a source of uncertainty. When quantitative information about the processes that 
precursor species undergo after emission is available, it is possible to introduce empirical 
coefficients (e.g. Fractional Aerosol Coefficients, Grosjean and Seinfeld, 1989) to estimate 
the expected amounts of products at the receptor. 
 
In multivariate models, the number of relevant factors and their correspondence with 
emissions is unknown and represents another source of uncertainty. Estimating the number 
of factors is often performed with an iterative procedure by checking the influence of the 
number of factors on the model performance. Another contribution to the overall uncertainty 
in factor analysis is the lack of a unique solution due to the large number of unknown 
variables, so called rotational uncertainty (Paatero and Hopke, 2009). This limitation is 
partially removed by the introduction of non-negativity constraints. In addition, a number of 
tests (e.g. FPEAK tests and analysis of residuals) can be used to identify the best rotation 
(Paatero et al., 2002). Moreover, introducing additional information about the sources and 
other constraints contributes to reduce or eliminate the rotational uncertainty.  
 
In receptor model studies there is a distinct trend towards tools that estimate the uncertainty 
of their outputs. In fact, while one third of the studies published before 2010 reported source 
contribution uncertainty, this value has raised to two thirds for the studies published since 
2010 (Belis et al., 2013). Mostly, the reported uncertainties vary between 2% and 60%. 
Uncertainties derived for most Positive Matrix Factorization (PMF) and Chemical Mass 
Balance (CMB) studies include the measurement error and the quality of the fit to the mass 
balance equation. To account for the uncertainty associated with the selection of fitting 
species and source profiles, some authors have statistically evaluated the results for a 
number of different solutions (Subramanian et al., 2007, Gelencsér et al., 2007, Gilardoni et 
al., 2011). In addition, new tools with improved uncertainty evaluation are at an advanced 
development stage (Paatero, pers. comm.). 
 
As an alternative, overall model uncertainty may be assessed by comparing models or 
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specific implementations of models. Different approaches have been used to compare the 
performance of different models on the same dataset ranging from simple visual comparison 
of models’ source contribution estimate (SCE) mean and standard deviation for each source 
type to regression analysis between the SCE obtained with different models. More recently, a 
methodology to evaluate intercomparison results on the basis of international standards for 
proficiency testing exercises has been used (Karagulian & Belis, 2012). This kind of 
intercomparison exercises consists of comparing the results of source apportionment 
analyses performed by independent practitioners using the same or different RMs on the 
same dataset. The main objectives of an intercomparison exercise are: a) to gather 
information about the reproducibility between different approaches and scientific 
backgrounds and b) to assess whether the uncertainty of the model output (SCE) meets 
given quality criteria. At present, almost 400 source contributions estimated by 38 
participants have been evaluated in two European exercises (Karagulian et al., 2012 ; Belis 
et al., 2013 in preparation). The results indicate a good quantitative agreement between the 
source contribution estimation of the reported solutions. More than 80% of the solutions meet 
the quality criteria corresponding to a 50% standard uncertainty. Nevertheless, the number of 
identified factors may vary among participants. 
 
In terms of evaluation approaches for dispersion models used for SA applications, several 
reviews have revealed that in most EU SA studies reported in the literature, evaluation of 
results is indirectly accounted for, and efforts to systematically evaluate the performance of 
alternative methodologies and estimate their intrinsic uncertainties have been scarce (Favez 
et al., 2010; Viana et al., 2008). A current review was performed within the framework of 
FAIRMODE SG2 activities (Fragkou et al., 2012). In this FAIRMODE review, it was 
encouraging to note that a high percentage (88%) of reported SA studies have evaluated 
their results. The most frequently used SA evaluation method was by comparing model 
results to data obtained from dedicated measurement campaigns (59% of reported studies 
corresponding to 55% of EU countries). For specific pollutants, such as Polycyclic Aromatic 
Hydrocarbons, correlating calculated levels with other pollutants measured at the receptor 
site during sampling campaigns can be used for evaluating SA results. This method is only 
feasible if the ratio between the pollutant of interest and the measured pollutant is 
characteristic for a specific source (Larsen and Baker, 2003). 
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Figure 1: Evaluation method of SA in the responses of SG2 FAIRMODE review. 
 
The next most common SA evaluation method used by EU member countries participating in 
the FAIRMODE review was model validation (36% of countries, 24% of questionnaires). This 
approach can involve the comparison and statistical evaluation of calculated pollutant 
concentrations against measured values, in order to test the performance of the dispersion 
model. Another SA evaluation method related to model validation is the sensitivity method, 
which is highly represented in the literature, particularly when dispersion models are applied 
for the identification and attribution of sources. SA modules incorporated into dispersion 
models can be evaluated by comparing SA results with results from model runs in which 
emissions from a particular source are greatly reduced (Brute Force Method - BFM) or set to 
zero (zero-out method). In the FAIRMODE review, information reported in a questionnaire 
returned by researchers from Spain, indicates the use of the zero-out sensitivity method to 
evaluate SA results for NOx and O3, based on dispersion model calculations. The use of the 
brute force sensitivity method has been reported by researchers in Italy for SA evaluation of 
NOx. An added advantage of the sensitivity methods for SA evaluation, especially in terms of 
regulatory needs, is that the relative importance of each source category and the potential 
implications on source-oriented emission control strategies can be examined. Also, they can 
be applied with a limited computational cost as the runs for SA evaluation need only cover 
limited time periods, ideally for which measurement data are also available. However, the 
applicability of this method is pollutant-specific and depends on the linearity of the chemical 
reactions of the examined pollutant (Yarwood et al., 2005). For example, due to non-linearity 
of nitrate chemistry reactions, zero-out results have potential deficiencies as source 
apportionments for the case of SOA and NOx. 
 
Model intercomparison as the preferred SA evaluation method was reported in a 
considerable number of responses (27% of countries) of the FAIRMODE review. In some 
cases different receptor models were applied for SA and their results were compared. The 
combined use of different types of receptor models could solve the limitations of the 
individual models (Viana et al., 2008) and is therefore a method used frequently for SA 
evaluation. In SA studies reported in responses by other countries, results from different 
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dispersion model types were compared to evaluate NO2 and O3 SA results.  
 
Existing emission data and emission inventories were used for SA evaluation in 
questionnaires returned by Italy, Finland and Spain, representing 24% of the questionnaires 
and 27% of the countries. Other SA evaluation methods that were less frequently reported by 
FAIRMODE review participants include statistical evaluation (18% of the countries and 12% 
of the questionnaires), comparison with literature studies for the area of interest (18% of the 
countries and 12% of the questionnaires) and the combined use of model results and 
meteorological observations to verify the validity of the SA results (9% of the countries 
corresponding to 6% of the questionnaires). Meteorological variables such as wind direction 
and seasonal circulation phenomena can be correlated to pollutant transport, thus indicating 
possible pollutant sources (Chakraborty and Gupta, 2010).  
 
Regarding the estimation of uncertainties, no particular approach for calculating uncertainties 
was reported in the questionnaires returned by the member states in the FAIRMODE review. 
Receptor modelling tools, such as CMB, provide uncertainty estimates corresponding to the 
calculated values for contributions from each source as their standard output. However, 
source profile species and receptor concentrations, each with uncertainty estimates, should 
be provided as input data to the CMB model in order to calculate uncertainties of SA results 
(Fujita et al., 2007). Routine PMF analysis provides output uncertainty estimations based on 
input data uncertainty and bootstrapping. 

2.2 Uncertainty in regard to Health Impact Assessment  

Health impact analysis relies on two main processes, namely exposure assessment and 
epidemiological analysis relating exposure to the health outcome. These two processes 
include a number of basic steps, finally leading to the quantification of the expected 
atmospheric pollution induced health burden in the target population, most commonly 
expressed in terms of years of life lost attributable to the exposure to the atmospheric 
pollutant (s) under study (Krzyzanowski, Cohen and Anderson, 2002). Assumptions and 
uncertainties related to each process may significantly influence the result of the analysis. 
The main sources of uncertainty in HIA studies can be summarised as follows: 
 
1. Uncertainties related to the results of the epidemiological studies or to their 

generalisation: It is therefore important that the selected health outcomes to be assessed 
are represented in reliable epidemiological studies, based on which reliable 
concentration-response relationships have been characterised. In terms of generalisation 
of epidemiological results, another important issue is the validity of extrapolating results 
from epidemiological studies carried out on a population to other populations for HIA. 
Although the biological processes linking exposure to susceptibility may not significantly 
differ between populations, a number of other factors could introduce bias and result in 
different exposure patterns for the same ambient concentration (e.g. differences in daily 
pattern of activity, climatic conditions, urban structure) or in different importance of 
confounding factors (Martuzzi, Krzyzanowski and Bertollini, 2003). 

2. Uncertainties in estimating the impact for each health outcome: This uncertainty is mainly 
related to the health-outcome frequencies data. Mortality may be considered generally 
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accurate, but frequency measures of morbidity and data on health-care systems contain 
uncertainties (Künzli et al.; 2000). Furthermore, in contrast to directly countable events 
listed in national health statistics (e.g., deaths or injuries due to traffic accidents), it is not 
possible to directly identify the victims of mixtures with cumulative toxicity, such as 
smoking or air pollutants. Also, the health outcomes may not be specifically linked to air 
pollution due to synergistic effects with other factors.  

3. Uncertainties in exposure assessment: Poor exposure assessment is an important 
source of uncertainty in HIA (Martuzzi, Krzyzanowski and Bertollini, 2003) and can result 
from errors and biases in either air quality models or in exposure models (Fuentes, 
2009). Exposure models are mostly probabilistic models accounting for the numerous 
sources of variability, including human activity data (that is often neglected, considering 
an immobile population/ static population distribution). The different sources of error and 
uncertainties in the exposure models result from variability not modelled or incorrectly 
modelled, inaccurate inputs, errors in coding, simplifications of physical, chemical and 
biological processes to form the conceptual models, and flaws in the conceptual model. 
Emission and meteorological input data accuracy and physical/chemistry assumptions 
and parameterisations in the air quality model largely affect the reliability on its results, 
the spatial distribution of ambient pollutant concentrations. Furthermore, statistical 
methods (e.g. kriging) used to produce higher resolved air pollution fields starting from air 
quality model results and other inputs (local observations, emissions etc) may also 
introduce uncertainties at specific locations far away from the observations. Evaluation of 
the air quality and exposure models is therefore highly recommended in HIA, preferably 
on the basis of probabilistic methods (e.g. Bayesian analysis). In cases of limited data 
availability, presenting results from a small number of model scenarios could provide an 
adequate uncertainty analysis for the air quality and exposure models. 

4. Uncertainties related to the concentration-response functions, estimated by 
epidemiological models: Some of the formal approaches for uncertainty analysis in 
epidemiological concentration-response models include Bayesian analysis, Monte Carlo 
analysis and model intercomparison (Fuentes, 2009). 

5. Uncertainties concerning the temporal scale of effects, i.e. the latency times from 
exposure to adverse event. This is an uncertainty mainly associated with long-term 
exposure studies, as acute effects follow exposure by a few days (Martuzzi, 
Krzyzanowski and Bertollini, 2003). 

6. Uncertainties related to the exposure reference value: In order to estimate attributable 
risks and attributable number of cases, as a function of concentration-response 
coefficients, a reference value for “no exposure” has to be defined (Martuzzi, 
Krzyzanowski and Bertollini, 2003). As assuming zero ambient pollutant concentration is 
not realistic, other assumptions may be used, such as using the estimated “natural” 
background, or using different reference levels associated to changes in pollutant 
concentration, in order to illustrate the potential benefits associated with different 
reduction policy scenarios. In the study by Künzli et al. (2000), the significant influence of 
the exposure reference value on the results of a HIA study was demonstrated. The health 
impact estimates would be ~54% higher if the exposure reference value was reduced 
from 7.5 µg/m3 to zero. 
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2.3 Uncertainty in regard to Integrated Assessment Modelling 

In the field of Integrated Assessment Modelling (IAM), uncertainty can be related to 
(Carnevale et al., 2012): 

• the decision model approaches. In the literature different Integrated Assessment 
Modelling (IAM) methodologies are presented: scenario analysis (Thunis et al., 2007), 
cost-benefit analysis (Vlachokostas et al. 2009), cost-effectiveness analysis (Carslon, 
Haurie, Vial, & Zachary, 2004), multi-objective analysis (Pisoni, Carnevale and Volta, 
2009; Guariso, Pirovano, & Volta, 2004). How does the approach impact effective 
planning design? 

• the optimization algorithms. The decision problem is solved by means of optimization 
algorithms. How does the optimization algorithm bias the determination of effective 
policies? 

• the planning indicators for human, ecosystems and materials exposure. The decision 
problem determines the abatement measures or other actions that optimize the 
objectives, and that have to comply with physical, economical and environmental 
constraints. Objectives and environmental constraints are typically indicators of human, 
ecosystems and material exposure. How do different sets of indicators impact on policies 
design? 

• the source-receptor relationships. Due to the large computational resources needed to 
run deterministic 3D air quality modelling systems, it is not possible to fully integrate them 
into an optimization problem. For this reason source-receptor relationships, that present a 
simplified relation between emissions and pollutant concentration, need to be derived. 
What is the uncertainty of these source-receptor relationships (Pisoni et al.,2009)? Which 
is the sensitivity of the decision problem solutions to different source-receptor 
relationships? 

• the baseline and projection emission scenarios and the emission reduction strategies  
• the spatial scales. A decision problem can be defined for different scales and resolutions. 

Which are the approaches suitable for different scales?   
• the meteorology. Source-receptor relationships are identified processing CTM 

simulations for different reference years. How do the meteorological conditions of 
reference years influence the design of policies? 

 
From the point of view of uncertainty in policy making, it is also important to keep in mind the 
results of the “UNECE workshop on uncertainty treatment in integrated assessment 
modelling” (UNECE, 2002), in which it was concluded that policy makers are mainly 
interested in robust strategies. Robustness implies that optimal policies do not significantly 
change due to changes in the uncertain model elements. Robust strategies should avoid 
regret investments (no-regret approach) and/or the risk of serious damage (precautionary 
approach) (Amann et al., 2011). This issue is also linked to the need of defining a set of 
indexes and a methodology to measure the sensitivity of the decision problem solutions. It is 
in fact worth underlining that, while for air quality models the sensitivity can be measured by 
referring in one way or the other to field data, for IAMs this is not possible, since an absolute 
“optimal” policy is not known and most of the times does not even exist. The traditional 
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concept of model accuracy must thus be replaced by notions such as risk of a certain 
decision or regret of choosing one policy instead of another. 
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3 QUESTIONNAIRE STRUCTURE 
The questionnaire that was distributed by APPRAISAL addressed five topics relevant to the 
use of models, including Topic 5 on uncertainty and robustness. The questionnaires were 
specifically addressed to national contact points in EU member states and stakeholders 
involved in the development of Air Quality Plans, but also to model users applying models in 
the frame of research projects. Both multiple choice questions as well as open questions 
were represented in this section of the questionnaire. Multiple choice questions were 
proposed as they are more straightforward to answer and process in a database afterwards, 
so they were carefully phrased in order to provide as much information as possible. 
However, as the problems and needs of the stakeholders could not be confined to the 
multiple choice questions, a number of open questions were also considered necessary.  
 

3.1 Explanation of close-ended questions 

Regarding the close-ended (multiple choice) questions of the questionnaire, the first two 
questions concerned model performance evaluation while the questions 3-6 addressed the 
issue of uncertainty estimation. In terms of performance evaluation, the aim was to obtain 
information on whether an evaluation methodology was applied for a particular model 
application (air quality modelling, source-receptor relationships, source apportionment, health 
impact assessment and integrated assessment) and on the type of the evaluation 
methodology performed. The choices suggested within the questionnaire for the types of 
evaluation methodology follow the framework proposed by Dennis et al. (2010) which 
distinguish four components of model performance evaluation as follows: 
 
1. operational evaluation involves assessment of model results compared with monitored 

data, which may include routine or field campaign observations of ambient pollutant 
concentrations, emissions, meteorology, and other relevant variables. 

2. diagnostic evaluation is a process-oriented analysis to determine whether the individual 
physical and chemical processes are correctly represented in the model.  

3. dynamic model evaluation is the analysis of model responses to changes in model input 
data, such as source emissions or meteorological conditions. 

4. probabilistic model evaluation is performed on the basis of methods such as model inter-
comparison and ensemble modelling, and attempts to capture statistical properties, 
including uncertainty or level of confidence in the model results, for regulatory model 
applications. This approach requires knowledge of uncertainty imbedded in both model 
predictions and observations. Probabilistic model evaluation is particularly helpful for 
predicting the accuracy of model results for future emission changes, and it is therefore 
considered essential for future planning purposes (Hogrefe and Rao, 2001). In some 
cases, however, where there is a lack of sufficient data for evaluation, the dependence 
on expert judgment is required for decision making. Experts must rely on their scientific 
theoretical knowledge and their experience from similar applications of the examined 
model (Rao, 2005). 
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The questionnaire also requests information on the specific model use that was evaluated 
(air quality modelling, source-receptor relationships, source apportionment, health impact 
assessment and integrated assessment) and on the application of specific software for 
evaluation. The development of specific software tools for model evaluation is mainly related 
to operational model evaluation, as the tools provide a platform for statistic analysis of model 
results compared to measurements. Statistical evaluation tools have been developed since 
the first model applications for regulatory purposes, as for example the Statistical Analysis 
System (SAS) (Baldridge and Cox, 1986). Examples of validation tools include the BOOT 
model evaluation software package (e.g. Chang and Hanna, 2004) and the Atmospheric 
Model Evaluation Tool (AMET) for evaluating meteorological and air quality models (Appel et 
al., 2011). A comprehensive tool (DELTA tool) including benchmarking service, where 
templates for reporting model performance according to EU legislation are also automatically 
produced, has been developed within the frame of FAIRMODE activities (Thunis, Georgieva 
and Pederzoli, 2012). It is important to gain information on the extent of use of such tools for 
regulatory applications in EU member states. 
 
Considering uncertainty analysis, the questionnaire includes questions on the uncertainty 
quantification methodologies used (global or local methods) and on the model components 
that were individually assessed. Meteorological parameters have long been recognised to 
affect air quality model results (Seaman, 2007) and are a widely examined uncertainty 
source. Moreover, much attention has been given by scientists to the importance of accurate 
emission input data for realistic air quality model results. For example, in a study by Digar et 
al. (2011), methods for estimating the likelihood that a given level of emission reductions will 
achieve a targeted improvement in air quality, in light of parametric uncertainties in the 
photochemical model used, were suggested. Emissions are a source of uncertainty that can 
be improved, and, therefore, policy-makers have pursued continuous improvement of the 
reliability of national emission inventory data (DEFRA, 2010). Uncertainty analysis of the 
model algorithms, physics, assumptions and codes is also an integral part of scientific 
evaluation which examines the accuracy, efficiency and sensitivity of model formulation. 
However, such an analysis is usually not performed when a model is applied for regulatory 
purposes, but should ideally precede model application. In many legislative applications, 
reliance on model results is based on the scientific evaluation of the model in previous 
studies. 
 

3.2 Explanation of open-ended questions 

Apart from the multiple choice questions, six open-ended questions were also proposed in 
the questionnaire. The first question aimed at receiving more in depth and detailed 
information on the performance indicators considered in the uncertainty/evaluation analysis. 
In the next two questions, model users were asked to explain in their own words how they 
judge that their model application results for both assessment and planning purposes have 
reached a sufficient level of quality. Furthermore, the open questions provide the opportunity 
for model users to comment on the problems and difficulties they have encountered in 
performing uncertainty analysis and model evaluation and to report the reasons for not 
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undertaking these quality control procedures. This question was added in the questionnaire 
in order to examine the needs and limitations of model users. The scientific community of 
APPRAISAL will then proceed to identify and suggest a methodology to respond to these 
needs, thus facilitating the introduction of evaluation and uncertainty assessment procedures 
in air quality model applications for regulatory purposes in the EU. It is important to note that 
all questions and answers refer only to the spatial scales addressed by the APPRAISAL 
project, i.e. the regional and local scales. 
 
One of the open questions was related to the quality control methodology used in case of 
applying an Integrated Assessment Model (IAM). In terms of the treatment of uncertainty in 
IAMs, the most common approach is to separately consider the uncertainty of the different 
model components, for example the uncertainties in the meteorological model, the 
uncertainties in the air quality model and the uncertainties in the cost-benefit model. In this 
approach, the main aim is to accurately quantify the existing uncertainties of the IAM 
separately. Another aspect in the assessment of IAMs is uncertainty prioritisation, which 
aims to identify the weakest components of the system. These are the constituents whose 
individual lack of quality contributes the most to the overall lack of quality in model results. 
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4 ANSWERS ANALYSIS 

4.1 Close-ended questions 

The responses to the APPRAISAL questionnaires were collected and stored in a database 
which was developed within the frame of the project. Out of the 53 questionnaires received at 
the time of this report, 39 included responses to the topic on “uncertainty and robustness” 
(one of the five topics addressed by the questionnaire). The responses reported the current 
practise in quality control procedures when applying integrated assessment modelling for air 
quality related studies (including Research Projects and Other studies) and Air Quality Plans. 
As the main component in air quality integrated assessment, air quality modelling was the 
most commonly evaluated component (Figure 2).  
 

 
Figure 2: Evaluation frequency for different components of air quality integrated assessment. 

 
In terms of the evaluation methodology used, operational and diagnostic methods were 
applied with higher frequency in comparison to the other methods, while expert judgement 
was also reported in a significant number of responses. Evaluation methods of higher 
complexity, such as dynamic and probabilistic approaches, were only applied in very few 
cases (Figure 3). 
 

 



 
 

D2.5 Uncertainty and robustness 

 

 Public 19 
 

!

Figure 3: Frequency of use of different evaluation methodologies, as reported in the  
APPRAISAL questionnaires. 

Out of these 39 responses on the topic of uncertainty estimation and model evaluation, 20 
were regarding air quality plans (AQPs) while 15 were research projects (RPs) and 4 
represented Other purposes. In the following sections, the analysis of the answers on model 
evaluation and uncertainty estimation will also be correlated to the purpose of model 
application, in particular whether the model was used within the frame of a RP or of an AQP.  
 
As it would be expected, the majority of model users rely on the operational evaluation 
technique (comparison with measurements) to assess the quality of the model results both in 
AQPs and RPs (Figure 4). The other evaluation methods were also represented in the 
returned questionnaires, although not so commonly applied. In the case of RPs, the 
percentage of responses indicating the use of a probabilistic or diagnostic method increases, 
whereas the number relying on expert judgement is relatively low. It can be therefore 
concluded, that a more comprehensive model evaluation process is performed in European 
member states in the frame of RPs than for AQP, with the operational evaluation dominating 
but complemented by other techniques. This can be attributed to the fact that these 
additional evaluation techniques require intensive personnel, infrastructure and time 
resources. 

Figure 4: Overview of evaluation methodologies used for the assessment of Air quality plans (AQP) 
and Research projects (RP). Note the total can exceed 100% as more than one methodology can be 
used at the same time. 
 
In terms of uncertainty analysis, it becomes obvious from the results of the questionnaire 
responses that uncertainty was mainly considered in the air quality modelling part of the IAM 
applications (Figure 5). 
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Figure 5: Uncertainty estimation separately considered in different model applications within IAM. 

9% of the responses reported that uncertainty estimation was performed for source-receptor 
relationships, source apportionment and health impact assessment, while uncertainty 
quantification for the IA system as a whole was represented only in 5% of the responses. 
 
Regarding the uncertainty analysis that was reported in the questionnaires, in the case of 
AQPs (Figure 6, left), 12 plans quantified uncertainty for the plan under study, 8 plans used 
uncertainty analysis from previous studies, while for 8 plans no response was obtained on 
whether uncertainty analysis was performed in the specific study or in previous studies. In 
the case of RPs (Figure 6, right), the majority (13 questionnaires) of the replied 
questionnaires reported uncertainty quantification specifically performed for the examined 
study, only 2 questionnaires have used previous studies and 3 out of 18 have not applied 
uncertainty quantification techniques.  
 

 
Figure 6: Uncertainty estimation performed in AQPs (left) and RPs (right). “Current” refers to 

uncertainty analysis applied to the reported IAM study, while “Previous” refers to  
uncertainty analysis performed in previous studies but for the same models. 

 
Global uncertainty analysis methods (e.g. Monte Carlo analysis) have been used in more 
studies compared to local uncertainty analysis methods, both in AQPs (Figure 7, left) and, 
more significantly, in RPs (Figure 7, right). It should be taken into account that the results in 
Figure 6 include the use of global or local methods for uncertainty analysis performed both in 
the specific (current) study as well as in previous studies. Also, in some of the 
questionnaires, no answer was provided for the methodology used (local or global), 
particularly in the case of AQPs. 
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Figure 7: Uncertainty analysis approaches in AQPs (left) and RPs (right). 

 
Variance-based uncertainty estimation methods are the most commonly used of the global 
uncertainty assessment methods. However, local uncertainty analysis methods (sensitivity 
methods, OaT) are also significantly represented in the responses, particularly in the case of 
RPs (Figure 8). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8: Local and Global analysis methods in the questionnaire replies. 
 

Figure 9: Uncertainty estimation in different IAM components in AQPs (left) and RPs (right). 
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AQ modelling is the IAM component for which uncertainty analysis is most commonly 
considered in the questionnaire responses, both in the case of AQPs (Figure 9, left) as well 
as for RPs (Figure 9, right). 
 
Figure 10 provides information on the AQ modelling elements for which uncertainty 
estimation was specifically carried out. As expected, model formulation was not one of the 
priority aspects examined in the case of AQPs (Figure 9, left), it was however considered in a 
significant number of RPs (Figure 9, right). In the frame of AQPs, uncertainties were mostly 
analysed for meteorology, emissions and boundary conditions (BC). Regarding RPs, it is 
interesting to note that uncertainties related to boundary conditions received less attention. 
For both AQPs and RPs, emissions related uncertainties are identified to significantly 
contribute to the total AQ modelling uncertainties. The problem of emissions related 
uncertainty was also often commented in the “open questions” replies of the questionnaire. 
 

 
 
 
 
 
 
 
 
 

 
Figure 10: Uncertainty estimation of different components of AQ modelling in the case of AQPs (left) 

and RPs (right). Note that the total can exceed 100%, as more than one methodology 
can be used at the same time. 

 

4.2 Open-ended questions 

From the analysis of the answers received to the open questions of the questionnaire, the 
main approaches in the quality control of model results used for assessment purposes are 
summarised below. The following four levels must be seen as progressive (from the simplest 
to the most complex). 
 
1. The model is assumed of sufficient quality and fit for assessment purposes because it is 

peer-reviewed and has been tested in many configurations. Past experiences are here 
the main quality justification. 
 

2. The model is assumed of sufficient quality by performing a comparison of model results 
with observations using basic statistical indicators (e.g. correlation, Root Mean Square 
Error, bias). Expert judgement or comparison with other studies is then used to assess 
the quality of the AQ model results. Continuous evaluation against measurements in 
forecast mode is also seen as a method to maintain a high quality level. 



 
 

D2.5 Uncertainty and robustness 

 

 Public 23 
 

!

 
3. The model is assumed to be of sufficient quality by comparing values obtained for 

selected statistical indicators (e.g. Bias, Index of Agreement) with values from literature 
(e.g. Boylan and Russel 2006, Gilliam et al. 2006) or with reference values, e.g. values 
set in the EU Directive 2008/50/EC which requires a model result uncertainty less or 
equal to 50%. 

 
4. In addition to the previous approaches, the model is assumed of sufficient quality after its 

evaluation in model inter-comparison studies. We also added in this step the application 
of the updated recommendations for model evaluation of the FAIRMODE network. 

Figure 11 illustrates the distribution of the responses organised around these four 
levels/categories. The majority of answers corresponds to level 3, indicating the comparison 
of statistical indicators with reference values (literature, Air Quality Directive). It must be 
noted that all answers corresponding to level 4 (more time/cost demanding one) refer to RPs 
exclusively, and are not used to assess the quality of the model results for applications 
regarding AQPs. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 11: Overview of referred methodologies to assess the quality of model assessment 
applications (ranked as mentioned in text above). Both AQPs and RPs are considered. 

 
In terms of quality control of model results for planning applications, the following approaches 
were represented in the replies to the questionnaires.  
 

1. The model is assumed to be adequate for planning when it behaves correctly for 
assessment applications. 

 
2. The reliability of the model is based on model intercomparison and ensemble 

approaches. 
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Figure 12: Overview of reported methodologies to assess the quality of model results for 
planning applications. 

 
Most of the answers (Figure 12) indicate that the quality of the model results for planning 
applications (typically to investigate the impact of an emission reduction scenario) is not 
explicitly assessed, but relies on evaluated model performance for assessment purposes. 
This is probably related to the fact that as planning applications refer to future time, no 
reference observations exist to compare model results with. Furthermore, the quality control 
methodologies which could be used (such as model inter-comparison, sensitivity simulations) 
are relatively time-consuming and often require qualified personnel and infrastructure 
resources, which are usually only available within a research project. It is interesting to note, 
that no reference technique is proposed so far to check the quality of the models used to 
quantify the impact of emission reduction scenarios in AQPs. 
 
Although not many replies were received in the open questions, a number of issues and 
needs can be identified in current-state estimation of model uncertainties, as reported by 
model users and regulators. These are summarised below and relate both to AQPs and RPs: 
 
• Reduce uncertainties in the model input data, particularly emissions (for specific 

compounds, e.g. NH3, or for specific sectors, e.g. transport and residential heating). 
 
• Need for more experimental data to validate models, especially for small scale models. 
 
• In terms of improving modelling tools and introducing best practices in air quality 

modelling, refining of model resolution to address modelling at smaller scales is essential. 
Similarly, higher resolution input data are needed. Extension of modelling periods to a full 
year or longer is also required in many applications. Finally, improvement of model 
quality during periods of specific weather conditions is recommended, e.g. for winter time 
especially for NO2 and PM10. 

 
• Need for an alternative evaluation technique apart from operational evaluation 

(diagnostic, dynamic, sensitivity studies) and for a relevant protocol. 
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5 LIMITATIONS OF THE CURRENT ASSESSMENT AND 
PLANNING TOOLS AND KEY AREAS FOR FUTURE 
RESEARCH AND INNOVATIONS 
Uncertainty estimates are an essential element of air quality assessment. Uncertainty, 
information is not intended to directly dispute the validity of the assessment estimates, but to 
help prioritise efforts to improve the accuracy of those assessments in the future and guide 
decisions on methodological choice as regards the tools that are being used. Every type of 
model evaluation faces different types of limitations, therefore it is easier to consider these 
according to the classification proposed by Dennis (2010), as described in section 2.1. 
 
Operational 
Measurements, as well as models are not always fit for purpose. For example, the issues of 
representativity of measurements as well as the matching of temporal and spatial scales 
between measurements and models are largely unresolved and do thus present challenges 
in the process of operational evaluation. In addition, operational model evaluation often 
comprises large amounts of statistical indices and diagrams which require a “second-order” 
analysis in order to provide useable information. 
 
Diagnostic 
This kind of evaluation is usually performed in order to identify the processes which present 
implementation problems and to estimate their impact on the final results. Techniques and 
practices for diagnostic evaluation have been described in various works (e.g. Saltelli et al 
2004, Saltelli et al. 2008, Cullen and Frey, 1999) and are now theoretically sound but are 
only rarely used in the field of air quality modelling (Galmarini et al. 2010). Several past 
studies have been based on sensitivity analyses of meteorological input to air quality models 
(e.g. Hanna and Yang, 2001), however a methodological framework of how to do this for the 
purposes of air quality assessment and not weather prediction is still lacking (Dennis et al, 
2010). Finally, ad hoc or specialised measurements are often needed in order to perform 
detailed diagnostic evaluation (eg. speciated PM, VOCs), which are not always available. 
 
Dynamic 
This type of evaluation is considered a good example of policy-relevant science. The main 
challenge in applying dynamic evaluation lies in the ability to distinguish the impact of 
changes in emissions in the absence of meteorological changes. This need calls for cases 
with specific characteristics: emission changes should be larger than 15-20%, the variability 
of concentrations should be discernible in the observations and the variability should be 
regional or local scale. There are quite a few good examples of such cases, however the 
data needs are often prohibitive for a thorough examination (Galmarini et al., 2010). 
 
Probabilistic 
While brute force methods to evaluate model application from a probabilistic point of view do 
exist for quantifying the nature and magnitude of model uncertainties, a comprehensive, 
theoretically based and computationally affordable framework remains to be defined. Various 
advances have taken place towards this goal, moving us from Monte Carlo methods (Moore 
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and Londergan, 2001; Beekman and Derognat, 2003 ; Werner et al., 2005 ; Werner, 2009) to 
methods such as the Direct Decoupled Method, the use of Green functions or Stochastic 
Response Surface Methods (Isukapalli et al., 1998). It is worth noting here that both model 
output and observations are subject to uncertainties, but those uncertainties are likely to 
have different statistical properties. This makes direct comparison of model output and 
observations very difficult. In order to perform a statistically valid comparison, the differing 
probability distributions for the two quantities must be taken into account (Galmarini et al. 
2010). 
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6 CONTRIBUTION TO THE AIR QUALITY DIRECTIVE 
In order to assess the total uncertainty and evaluate the performance of an IAM system, the 
uncertainty related to the different modelling components of the system (meteorological 
modelling, air quality modelling, exposure modelling, cost-benefit modelling) has to be 
separately quantified. However, it remains a scientific challenge to interconnect all the 
individual uncertainties of IAMs, as the chemical and physical processes involved are not 
linear and, also, some uncertainties may compensate each other. Combining all uncertainties 
to calculate a total uncertainty would require a great number of simulations to take into 
account all possible combinations. This complexity does not allow for setting straightforward 
quality criteria in terms of IAMs, even though IAM is now considered an important policy tool. 
In terms of AQ policy, AQ modelling is the IAM component explicitly mentioned in EU 
legislation. In particular, the 2008/50/EC Framework Directive places more emphasis on, and 
encourages, the use of models in combination with monitoring in a range of regulatory 
applications, in comparison to previous Directives, which have based AQ assessment and 
reporting almost exclusively on measurement data. 
 
In contrast to measurements, no reference methodology for modelling is defined in the AQD, 
but, as with measurements, model results have to meet certain accuracy standards (Stern 
and Flemming, 2004). These standards are set with regard to the calculated annual, daily 
and hourly pollutant values, as air quality modelling is primarily applied for AQ assessment, 
in order to assess compliance with limit values of similar temporal resolution. However, as 
the directive does not provide guidelines on how to carry out model evaluation to achieve the 
quality requirements imposed, the development of relevant guidelines is necessary for 
modellers and authorities. Several attempts have been made for the establishment of 
uncertainty assessment guidelines within a number of projects, including AIR4EU (Denby et 
al., 2011) and FAIRMODE. The Guidance Document that was elaborated within FAIRMODE 
is the current reference point for model users and regulators to ensure that their air quality 
model meets the quality criteria required by EU legislation.  
 

6.1 Minimum requirements and methods to achieve them 

AQ modelling may be applied to a range of applications relevant to the AQD, including 
assessment of the existing air quality and compliance with limit values, management 
(including mitigation and planning for future air quality) and source apportionment. However, 
in the AQD, modelling is only explicitly mentioned in regard to the application of assessment 
and, therefore, the model quality objectives defined in Annex I of the AQD apply only to air 
quality assessment applications when reporting exceedances. 
 
The modelling quality objectives are described in Annex I of the AQ Directive and are given 
as a relative uncertainty (%). Uncertainty is then further defined as: “The uncertainty for 
modelling is defined as the maximum deviation of the measured and calculated 
concentration levels for 90 % of individual monitoring points, over the period considered, by 
the limit value (or target value in the case of ozone), without taking into account the timing of 
the events. The uncertainty for modelling shall be interpreted as being applicable in the 
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region of the appropriate limit value (or target value in the case of ozone). The fixed 
measurements that have to be selected for comparison with modelling results shall be 
representative of the scale covered by the model.” 
 
Two mathematical formulations have been proposed to estimate model uncertainty for air 
quality assessment applications, in view of the previous definition of uncertainty according to 
the AQD. The formulation in the FAIRMODE Guidance Document (Denby, 2010) calculates 
the Relative Directive Error (RDE), while the formulation proposed by Stern and Flemming 
(2004) calculates the Relative Percentile Error (RPE). Both these formulations are based on 
the divergence between model results and available measurements at a particular station. 
Therefore, it is important that spatial and temporal model resolution is considered for using 
any of the two formulations. When the observed and modelled concentrations are well below 
the limit value, the RDE formulation of uncertainty is recommended.  
Other factors to consider when applying AQ modelling for air quality assessment are the 
following: 
 
• The “90% of stations requirement”, according to which the AQ Directive states that the 

uncertainty will be determined from the maximum of 90% of the available monitoring 
stations, in order to exclude outliers from the uncertainty calculation. However, this does 
not apply if less than 10 monitoring stations correspond to the same scale as the model, 
in which case all stations have to be considered. 

• In order to use model results with confidence for compliance purposes, it is important that 
the model has been adequately validated for the particular application and well 
documented and that it contains the relevant physical and chemical processes suitable 
for the type of application, the scale and the pollutant for which it is applied. 

• Finally, the quality of required input data has to be sufficient, e.g. the relevant emission 
sources for the application need to be adequately represented and suitable 
meteorological data must be available. 

 

6.2 Standardisation and harmonisation 

In response to the need for a standardised methodology to perform uncertainty estimation 
when relying on the results of an AQ model for air quality assessment, the DELTA tool has 
been developed within the frame of the FAIRMODE activities. The DELTA Tool is a model 
evaluation software which provides summary statistics (i.e. BIAS, RMSE, correlation 
coefficient) as well as scatter-plots, time series plots, Taylor, Target and other diagrams 
providing an overview of the quality of model results against available observations (Thunis, 
Georgieva and Pederzoli, 2012). In particular, the statistical indicators calculated by the 
DELTA tool are presented in ANNEX III. A number of customised diagrams (Timeseries, bar 
plots, scatter diagrams, Taylor/Target diagrams, etc.) can be automatically produced on the 
basis of the statistical results. A benchmarking service is also implemented in the DELTA 
tool, which automatically produces standardised summary reports containing performance 
indicators related to a given model application according to AQD requirements. These 
indicators provide an overview of the strengths and weaknesses of each model. Different 
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performance criteria are suggested per statistical indicator for each pollutant and spatial 
scale. The DELTA tool facilitates the evaluation of the model performance and provides 
several functions, for example the possibility of switching from one diagram to another while 
keeping the same data selection and the possibility of identifying differences in model 
behaviour in terms of location, station type, etc. The DELTA tool software along with detailed 
instructions for use is currently restricted to people actively involved in FAIRMODE activities 
(http://aqm.jrc.ec.europa.eu/DELTA/disclaimer.htm). The tool has already been tested in 
various applications, including the evaluation of the WRF model (Miglietta et al., 2012) and of 
the Transport Chemical Aerosol Model (TCAM ; Carnevale et al., 2008). 
 
In conclusion, the current AQD (2008/50/EC) dictates the need for Member States to report 
uncertainties of both the monitoring and modelling assessments. However, the Directive 
does not state what these uncertainties actually imply, i.e. that there is some probability for 
an exceedance, rather than a definite, yes or no. For this reason a major challenge for the 
scientific community in the coming years but also during the drafting of the revised AQ 
Directive is to provide a robust methodology for the uncertainty assessment in exceedances 
reporting that effectively deals with this aspect. This can be achieved by taking into account 
other types of legislation that use methods for dealing with probability and uncertainty. 

7 CONCLUSIONS AND SUMMARY 
In the present report of the Deliverable D2.5 on “Uncertainty and Robustness”, current state 
of the art approaches in model validation and uncertainty estimation are reviewed and their 
limitations are briefly described. The focus of the report is on model use for regulatory 
purposes and therefore, the different uncertainty approaches in Air Quality Assessment, 
Health Impact Assessment and Integrated Assessment Modelling are considered, in view of 
the EU legislation requirements. Information for this review was derived from published 
scientific papers and from the answers received in response to the questionnaire distributed 
within the framework of APPRAISAL activities. Model quality assessment and evaluation 
methods are examined separately for model use in relation to Air Quality Planning and for 
model use in relation to other purposes, e.g. Air Quality Assessment or research projects. 
 
The main outcome from the analysis of the questionnaire replies indicates that model 
evaluation and uncertainty estimation is more regularly performed in air quality modelling, 
while it is not often applied in other IAM components such as for example in the case of HIA 
applications. Operational and diagnostic evaluation are the evaluation methods preferred 
both in the case of modelling for the purpose of air quality planning as well as for research 
projects. For the purpose of Air Quality Plans, expert judgement is also frequently used. 
Uncertainty propagation methodologies are also used, although not so often, to quantify 
confidence levels of Air Quality model results. The needs that emerged from the replies were 
related to the quality and quantity of input and validation data and to the improvement of 
modelling tools and the use of best modelling practices. Many replies reported the need for 
the establishment of an evaluation protocol in order to standardise and harmonise validation 
and uncertainty estimation methods in EU countries. 
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ANNEX I : THE QUESTIONNAIRE REGARDING 
UNCERTAINTY AND ROBUSTNESS (QA/QC) 
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ANNEX II : GLOSSARY OF TERMS 
Diagnostic Evaluation refers to a process-oriented analysis to determine whether the 
individual physical and chemical processes are correctly represented in the model (Dennis et 
al., 2010). 
 
Dynamic Evaluation involves the analysis of model responses to changes in model input 
data, such as source emissions or meteorological conditions (Dennis et al., 2010). Sensitivity 
analysis is most commonly applied within the frame of the dynamic evaluation. 
 
Probabilistic Evaluation: This type of evaluation is performed on the basis of methods such 
as model inter-comparison and ensemble modelling, and attempts to capture statistical 
properties, including uncertainty or level of confidence in the model results, for regulatory 
model applications (Dennis et al., 2010). This approach requires knowledge of uncertainty 
imbedded in both model predictions and observations. 
 
Operational Evaluation involves assessment of model results compared with monitored 
data, which may include routine or field campaign observations of ambient pollutant 
concentrations, emissions, meteorology, and other relevant variables (Dennis et al., 2010). 
 

Global uncertainty quantification methods: these uncertainty methods are based on 
exploring the space of the input factor, according to the consideration that it is possible to 
select a set of data points that are more informative and robust than derivative values 
estimated at a single data point at the centre of the space. A number of multiple choices are 
given for global uncertainty methods. 

o Elementary Effects: A sensitivity analysis method based on calculating for each 
input a number of incremental ratios, called Elementary Effects (EE), from which 
basic statistics are then computed to derive sensitivity information (Campolongo 
et al. 2007). 

o Variance-Based methods: A sensitivity analysis method that involves the 
decomposition of the total output variance into the contributions of the input 
factors. The aim is to compute “first and “total order sensitivity indexes” (Saltelli et 
al., 2010). 

o Factor Mapping and Metamodelling: These methods may be used in analyzing 
when a particular model provides results of sufficient quality in certain ranges 
(Helton et al., 2006). 

o Other: other global uncertainty analysis methods not fitting into the above 
categories, or a combination of methods 

Local uncertainty quantification methods: these methods require a limited number of 
simulations and are less accurate than global one. One example of such methods is: 

o OaT (One-at-a-Time) is one of the simplest and most common approaches as it 
involves changing one factor in each model simulation, to see what effect this 
produces on the output. 
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Optimization algorithms: are tools to automatically determine the best alternative(s) when 
one or more performance criteria have been formulated in mathematical terms.  
 
Planning indicators for human, ecosystems and materials exposure. The decision problem 
in Integrated Assessment Modelling determines the abatement measures or other actions 
that improve the objectives, and comply with the physical, economical and environmental 
constraints. Objectives and environmental constraints are typically indicators of human, 
ecosystems and material exposure. 
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ANNEX III: Statistical performance indicators calculated by 
DELTA tool 

 


