

Air Pollution Policies foR Assessment of Integrated Strategies At regional and Local scales www.appraisal-fp7.eu

APPRAISAL: IAM scheme and guidance

Giorgio Guariso DEIB – Politecnico di Milano

Brussels, APPRAISAL Final Conference, 11 May 2015

DRIVERS

² LEVEL OF COMPLEXITY

1 DPSIR blocks	Low	Medium	High
Activities that produce emissions (Drivers) Emissions (Pressure)	Top-down information in a limited number of sectors and a a coarse resolution. Detailed projections are not possible. Uncertainty is not considered	Combines top-down with bottom-up approach, preferably with local activity and emission factor information. Uncertainty is not considered	Bottom-up information at the highest possible resolution. The uncertainties for the emissions can be quantitatively calculated preferably using the Monte Carlo methods.
Air Quality (State)	apportionment technique to li emissions to air quality	adapted to the studie	A chain of nested models adapted to the different scales
	through model intercomparison is recommended.		
Health assessment (Impacts)	A simple description of exposure from measurements or AQ modelling simulations and a simple description of the spatial distribution and composition of the population. Different sources of uncertainty	A more detailed description of the air quality indicators distribution is combined with a simple population description.	Detailed temporal and spatial resolution for the air quality indicators distribution and population data, with the distinction of subgroups with different vulnerability.
Abatement measures (Responses)	A selection approach based on expert elicitation is used.	complemented with source apportionment.	The selection of measures is based on an optimisation procedure.
	Uncertainty can be tackled by for	ocusing on no-regret measures	

DB Plans/Projects taxonomy

Plans taxonomy (actual plan in Germany)

Questionnaire Info Questionnaire Fill In Login Register Queries Statistics	Selection – Topic: TOPIC 3: Health Impact Assessment approaches Question: 1 - Which HIA approach was used?
	Filter - Enable filter:
	Topic: TOPIC 2: Air quality assessment and planning, including
	Question: 2 - IA methodology
	Answer: 2.5 - Multi-objective approach

Appraisal project

Questionnaire Info		
Questionnaire Fill In		
Login		
Register		
Queries Statistics		

Guidance on IAM

- Presents a comprehensive set of topics that should be addressed to develop an IAM study, together with the main approaches that can be used.
- The emphasis is mainly on the overall picture and the links between DPSIR building blocks.
- It does <u>not</u> represent detailed technical instructions on how to set up an IAM and even less the user's manual of a specific tool.

Guidance on IAM/2 STATE: Pollution concentrations

- How to determine the concentrations for describing the state?
- ➤ How to choose an AQ model for determining the state?
- How can Source-Receptor models be used?
- How to use observational data with model results?
- > What would be an appropriate **period**?
- > How to
 - **Operational model evaluation** involves comparison of model results with routine monitored data ...
 - **Diagnostic model evaluation** is a process-oriented analysis to determine whether the individual physical and chemical processes are correctly represented ...
 - **Dynamic model evaluation** is the analysis of model responses to changes in model input data...
 - **Probabilistic model evaluation** is performed on the basis of methods such as model inter-comparison and ensemble modelling, and attempts to capture statistical properties, ...

Guidance on IAM/3 IMPACTS: Health

- Why do we consider health impact in an IAM?
- What levels of complexity can be achieved in health impact assessment?
- Is there a preferred indicator to be used to quantify health impact?
 - Indicators often used are number of **premature deaths**, **YOLLs**,
- > Are the
- **DALYs**, number of hospital visits and life expectancy changes.
 - health e Cost-benefit studies prefer to list all mortality and morbidity
- outcomes to compare all health benefits with the costs of What ar mitigation actions.
- What ar
- What u health in
- *Recent studies suggest a large range of outcomes other than* cardio-respiratory diseases, among those, effects on reproduction, birth weight and duration of gestation.

Guidance on IAM/4

- Each DPSIR block must be represented by one or more indicators to guarantee the possibility of comparisons.
- To effectively support decisions, indicators have to express the potential impact of policy (in)action. Different indicators have different strengths in supporting policies.
- The indicator choice thus depends on the available data and on the policy question itself.

 \Rightarrow A certain level of subjective judgement is unavoidable

Guidance on IAM/5

- There is no way to validate future scenarios for drivers nor pollution models in situations quite different from current ones.
- Uncertainty is thus inherently large ("deep uncertainty").
- Technology often enters the picture with an unpredicted speed (e.g. LED lights).
 - ⇒ The time span over which an air quality plan may remain valid is rapidly reducing
 - ⇒ We need to move to a new evolving approach which closely follow socio-economic dynamics

Two test cases

Bruxelles city

Porto region

